

Surface CIMV, Low Flow, HTV 10,000 psi

SF10000HTVB

Operations and Maintenance Manual

Surface CIMV, Low Flow, HTV

SF10000HTVB

TABLE OF CONTENTS

Abou	t SkoFl	0	. 2
Gene	al Info	ormation	. 2
Hydra	ulic Ra	atings	. 3
Stora	ge		. 3
Instal	ation .		. 3
	1.	Mounting	. 3
	2.	Hydraulic Installation	. 3
	3.	Start Up Procedures	. 4
	4.	Adjustment and Calibration	. 4
Maint	enanc	e	. 4
	5.	General	. 5
	6.	Disassembling the SF10000HTVB	. 6
	7.	Replacing the Stem Assembly Seals	. 7
	8.	Replacing the Piston Cup Seal	. 7
	9. Assen	Replacing the Gate Pad and Gate Pad nbly Seals	. 8
	10.	Replacing Stem Seals	. 8
	11.	Valve Reassembly	. 9
	12.	Handle Installation	10
	13.	Disconnecting Valve From the SF3 Actuator	11
	14. Actua	Reconnecting the SF10000HTVB to the SF3 tor	11
Frequ	ently A	Asked Questions	12
Troub	leshoo	oting	13
Appe	ndix A	– A Typical Chemical Injection System	14
Appe	ndix B	– SF10000HTVB GA and BOM Drawings	15

TABLE OF FIGURES

Figure 1 – Valve Calibration Schematic	. 4
Figure 2 – SF10000HTVB Cross-Section	. 6
Figure 3 – Square Adapter Removal	. 6
Figure 4 – Gate Pad Assembly Removal	. 6
Figure 5 – Piston Assembly Removal	. 7
Figure 6 – Stem Assembly Removal	. 7
Figure 7 – Stem Assembly Seals	. 7

Figure 8 – Stem O-Ring Tool with Seals	7
Figure 9 – Piston Assembly	7
Figure 10 – Installing Piston Seal	8
Figure 11 – Gate Pad Assembly Cross Section	8
Figure 12 – Stem Seal Cross Section	8
Figure 13 – Stem Seals	8
Figure 14 – O-ring Press Tool	9
Figure 15 – SF10000HTVB Cross-Section	9
Figure 16 – Stem Sealing Surface	9
Figure 17 – Spring Stack Arrangement	10
Figure 18 – Gate View Through Gate Pad Hole	10
Figure 19 – SF10000HTVB with SF3 Actuator	11
Figure 20 – PDFM Connecting Tube	11
Figure 21 – Troubleshooting	13

TABLE OF TABLES

Table 1 – Filter Specification	3
Table 2 – SF10000HTVB Spares Kit Part Numbers	!
Table 3 – SF10000HTVB Rebuild Kit Number Guide	!
Table 4 – SF10000HTVB Seal Kit Number Guide	!
Table 5 – SF10000HTVB Stem Kit Number Guide	!
Table 6 - Maintenance Tool Requirements	!
Table 7 – Frequently Asked Questions	12

SF10000HTVB

ABOUT SKOFLO

Our experience and track record speak for itself. SkoFlo has delivered over 20,000 valves since 1988. We are the only company that proves our products by testing in surface applications before deploying them subsea. The result is that SkoFlo products have amassed over 25 million continuous operating hours. This level of experience is unparalleled and provides the basis for being the solution provider to our served market.

GENERAL INFORMATION

Product Overview

The SF10000HTVB is a pressure independent chemical injection and metering valve (CIMV), used in the petroleum industry to accurately control chemical injection rates. The SF10000HTVB regulates flow to counter pressure changes on the inlet and outlet of the unit. This is referred to as "pressure independence".

Pressure Independence

SkoFlo defines pressure independence as the percent (%) of reading change for each 1,000 psi (69 bar) change in supply or outlet pressure.

Pressure independence in the SF10000HTVB is a completely mechanical process, requiring zero power.

The principle of pressure independence is that the valve maintains a constant differential pressure (dP) across an internal orifice (the 'gate'), thus resulting in a constant flow rate through that orifice.

The pressure that is generated by flow through the gate is applied to either side of a spring balanced piston that carries a regulating pin. The piston will travel to a position where the spring force equals the pressure force.

Minimum Differential Pressure

For the SF10000HTVB to provide pressure independent performance, a minimum differential pressure (min dP) is required across the valve to allow the spring-balanced piston to move to a truly balanced location.

In general, higher flows and/or viscosities require a higher min dP across the valve. Refer to the product datasheet for specific information.

Guidelines for Using this Manual

The following instructions are provided to ensure a safe and proper installation and operation.

- Read all instructions prior to installation and operation of this product.
- Follow all warning and caution notes.
- Install this product as specified in the instructions provided by SkoFlo.
- Prior to use, educate personnel in the proper installation, operation, and maintenance of this product.
- Only use replacement parts specified by SkoFlo.

Warning, Caution, Notice

Throughout this manual there are steps and procedures which, if not followed, may result in a hazard. The following flags are used to identify the level of potential hazard.

! WARNING

WARNING IS USED TO INDICATE THE PRESENCE OF A HAZARD WHICH CAN CAUSE SEVERE INJURY, DEATH, OR SUBSTANTIAL PROPERTY DAMAGE IF THE WARNING IS IGNORED.

! CAUTION

CAUTION IS USED TO INDICATE THE PRESENCE OF A HAZARD WHICH CAN CAUSE INJURY OR PROPERTY DAMAGE IF THE WARNING IS IGNORED.

! NOTICE

NOTICE IS USED TO NOTIFY PEOPLE OF INSTALLATION, OPERATION, OR MAINTENANCE INFORMATION, WHICH IS IMPORTANT BUT NOT HAZARD RELATED.

Abbreviations and Acronyms

CIMV Chemical Injection and Metering Valve

dP Differential Pressure

GA General Arrangement

GPD Gallons Per Day

HTV High Turn-Down Valve

LPH Liters Per Hour

SHCS Socket Head Cap Screw

psi Pounds per Square Inch

HYDRAULIC RATINGS

! WARNING

REFER TO THE GENERAL SECTION OF THE PRODUCT DATASHEET FOR DESIGN PRESSURE DETAILS.

! NOTICE

THE SF10000HTVB REQUIRES A MINIMUM DIFFERENTIAL PRESSURE ACROSS THE VALVE OF 300 PSI (20.7 BAR) TO ACHIEVE FULL RATED FLOW.

Max Working Pressure: 10,000 psi (689 bar)

Hydro-Pressure: 15,000 psi (1,034 bar)

Flow Ranges:

0.6 to 600 GPD (0.09 to 95 LPH)

25 to 2500 GPD (3.9 to 394 LPH)

Min Differential Pressure (DP) for Max Rated Flow: 300 psi*

* Lower flow rates require a lower DP

STORAGE

! NOTICE

IT IS RECOMMENDED TO STORE THE ASSEMBLIES IN THE SHIPPING CRATE, IF POSSIBLE.

The SF10000HTVB should be stored in a shelter and be protected from moisture and particulates. Storage temperatures shall be between –50°F and 158°F (–45°C and 70°C).

Any open hydraulic connections will be furnished with plastic blanking plugs.

It is important not to store the SF10000HTVB with production chemicals in the unit. These chemicals can settle, possibly resulting in damage to the unit. SkoFlo recommends that the valve be stored with a mixture of glycol in water as the preservation fluid.

INSTALLATION

WARNING

CHEMICAL COMPATIBILITY SHALL BE DONE AND CHECKED BEFORE USE, EXCEPT FOR MEG AND WATER MIXTURES.

WARNING

THE SF10000HTVB SHALL NOT BE INSTALLED SUBSEA.

1. Mounting

The SF10000HTVB can be panel or base mounted in any orientation. See Appendix B for more details.

If panel mounting, unscrew the handle fastener with a 2mm Allen wrench and remove the handle. Mount the valve, then replace the handle and tighten the fastener in place.

2. Hydraulic Installation

Install the SF10000HTVB so that the flow is in the proper direction. The IN (inlet) and OUT (outlet) connections are marked respectively. See Appendix B for details.

Install an inline filter upstream of the SF10000HTVB.

Clean chemicals and proper filtering are very important. Omitting the filter can cause the valve to become plugged.

Table 1 lists the filter requirements for the various flow ranges. Note: if coarser filters are used, the adjustment handle may need to be periodically opened to flush out any debris.

Table 1 – Filter Specification

Flow Range	Filter Micron Size
0.6 to 10 GPD	40
10 to 700 GPD	80
> 700 GPD	200

A pulsation dampener is recommended to be installed on the inlet header supplying the SF10000HTVB for improved longevity and set point consistency. A bladder type pulsation dampener is preferred over a piston type.

Surface CIMV, Low Flow, HTV

Reactive dampeners that use baffles will do little to dampen the pressure over the full flow range of the valve.

The SF10000HTVB is not a positive shut off device, therefore, a valve on the inlet or outlet will be required to meet shut off specifications. The preferred location of the shut off valve is on the outlet of the SkoFlo valve to minimize the shock to internal parts during start up.

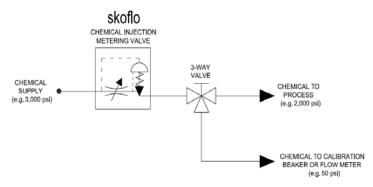
A check valve shall be installed immediately downstream of the SF10000HTVB (within 6 inches) to prevent damage to the piston cup seal and to prevent well fluids entering the valve. The 6-inch maximum is required to eliminate stored pressure build up during startup. Check valve cracking pressure is recommended to be under 10 psi to enhance longevity of check valve seats.

An example of a typical chemical injection system is given in Appendix A.

3. Start Up Procedures

- 3.1 Open the supply isolation valve to the SkoFlo valve slowly (> 1 second). This will allow pressures within the unit to equalize slowly, the valve will stabilize quickly.
- 3.2 Turn the rate adjustment handle clockwise until you are at the desired flow rate.
- 3.3 Always start at a flow rate above the desired flow and decrease to the desired setting (turn handle clockwise to decrease flow rate).
 - For the most consistent set point results, rotate handle ½ turn clockwise to reach the set point.
- 3.4 The flow controller is now set, and further adjustments are not required.

4. Adjustment and Calibration


The SF10000HTVB is a pressure independent flow control device. Once the valve is set at a desired flow rate, that flow rate is maintained even though the pressure conditions upstream and/or downstream of the valve may change considerably.

The flow rate can be set using an inline flow meter; however, it must be capable of withstanding the process pressure. Another method of calibrating the SF10000HTVB is with a 3-way valve and a line to a calibration beaker. Once the flow rate is set, the 3-way valve is switched to direct the chemical to the process (see Figure 1).

SF10000HTVB

Since the SkoFlo valve regulates the flow independent of the pressure differential across it, the flow rate to the process is the same as the flow rate set using the beaker. Overall monitoring of the flow is done by taking inventory of the usage from the supply tank.

Figure 1 – Valve Calibration Schematic

MAINTENANCE

! WARNING

ANY SERVICE REPAIR SHALL BE PERFORMED BY TRAINED PERSONNEL.

! NOTICE

IF ANY ABNORMALITIES ARE FOUND THROUGHOUT THE MAINTENANCE, PLEASE REPORT TO THE RESPECTIVE ENGINEERS.

5. General

Spares kits available for typical maintenance items are listed in Table 2. See Tables 3, 4, and 5 for part number guides.

Table 2 – SF10000HTVB Spares Kit Part Numbers

ITEM	PART NUMBER	
Complete Rebuild Kit	31655-10-XXXX-XXXX-1S-XX-XX	
Seal Kit	31664-10-XXXX-1S	
Stem Assembly Kit	31625-10-XXXX-XXXX-XX-XX	
Piston Assembly Kit	31623	
Gate Pad	30512	
Washer Spring Stack	30513	
O-ring Installation Tool Kit	31624	

Table 3 - SF10000HTVB Rebuild Kit Number Guide

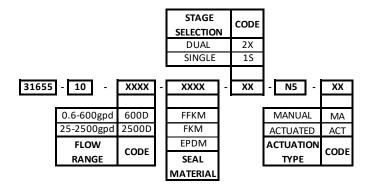
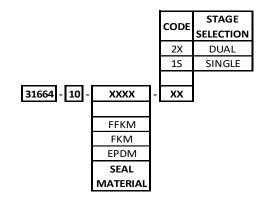
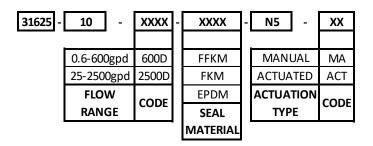




Table 4 - SF10000HTVB Seal Kit Number Guide

Table 5 - SF10000HTVB Stem Kit Number Guide

Table 6 - Maintenance Tool Requirements

Tools and Parts	Quantity
Vise	1
250 ft.lb [340 Nm] Torque wrench	1
50 ft.lb [68 Nm] Torque wrench	1
Socket extension	1
28mm socket	1
13mm socket	1
12mm socket	1
10mm Allen socket	1
Pliers	1
2mm Allen wrench	1
5mm Allen wrench (required for SF3 Actuator)	1
Brass Rod (3.5mm Diameter)	1
Hammer (required for SF3 Actuator)	1
9/16" wrench (required for SF3 Actuator with PDFM)	2
Circlip Pliers (.035" Tip Diameter)	1
HTVB O-Ring Installation Kit (P/N: 31624)	1
Brass Pick	1
Pick or small flat head electrical screwdriver	1
Parker Super Lube (or equivalent)	1
Dynatex Anti-Seize & Lubricating Compound (or equivalent)	1
Molykote G-4700 Lithium/Moly Grease (or equivalent)	1
Loctite 222 Low Strength Threadlocker (or equivalent)	1

skoflo

6. Disassembling the SF10000HTVB

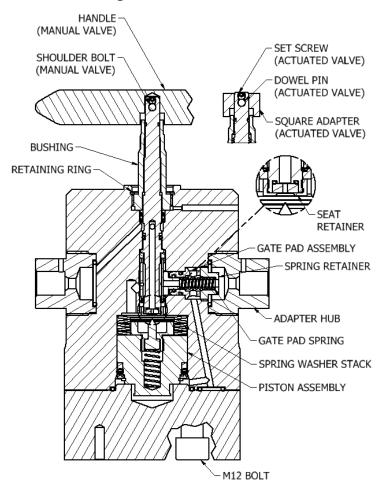


Figure 2 - SF10000HTVB Cross-Section

- 6.1 Remove the valve from the system. If applicable, see Section 13 for information on unpairing the valve from an SF3 Actuator.
- 6.2 Rotate the handle clockwise until you reach the bottom stop.
- 6.3 Remove the handle or square adapter
 - 6.3.1 For Manual valves:
 - 6.3.1.1 remove handle fastener *2mm Allen wrench*
 - 6.3.1.2 Remove handle.
 - 6.3.2 For Actuated valves:
 - 6.3.2.1 Remove set screw *2mm Allen wrench*.
 - 6.3.2.2 Remove dowel pin. If necessary, hold the square drive in a vise and tap the dowel pin out 3.5mm dia rod, hammer.

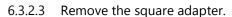


Figure 3 - Square Adapter Removal

- 6.4 Secure the valve in a vise with the inlet hub facing up.
- 6.5 Unscrew the adapter hub (31405) *28mm* socket.
- 6.6 Unscrew the spring retainer (31404) *12mm* socket.
- 6.7 Remove the spring and gate pad assembly A brass rod can be used to aid pad assembly removal.

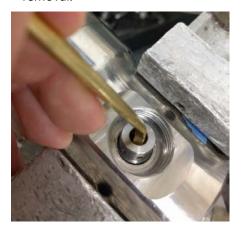


Figure 4 - Gate Pad Assembly Removal

- 6.8 Resecure the valve in vise with the base facing up.
- 6.9 Unscrew the 8x M12 bolts and remove the base 10mm Allen socket.
- 6.10 Remove the piston assembly and washer springs. Set the piston down pin side up to protect the tip of the pin *pliers*.

Figure 5 - Piston Assembly Removal

! NOTICE

IT IS CRITICAL THAT THE GATE PAD IS REMOVED <u>BEFORE</u> THE STEM. FAILURE TO DO SO WILL RESULT IN DAMAGE TO THE STEM GUIDE RINGS.

6.11 Place a 12mm socket over the seat retainer (31409) and rotate counter-clockwise until you can withdraw the old stem assembly from the body – 12mm socket, socket extension.

Figure 6 – Stem Assembly Removal

- 6.12 Remove valve from vise.
- 6.13 Remove the retaining ring (71007136) that retains the stem bushing and discard *Circlip pliers* (.035" Tip Diameter).
- 6.14 Resecure the valve in a vise with the stem bushing facing out.
- 6.15 Unscrew the bushing from the body *13mm* socket.

7. Replacing the Stem Assembly Seals

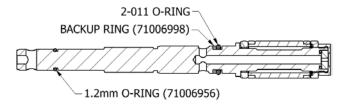


Figure 7 - Stem Assembly Seals

7.1 Screw the O-ring installation tool onto the stem as shown in Figure 8 – *PN 31479* (Actuated) or 31480 (Manual)

Figure 8 - Stem O-Ring Tool with Seals

- 7.2 Apply O-ring lube to the 2-011 O-ring.
- 7.3 Carefully slide the 2-011 O-ring over the stem into the O-ring groove. Minimize stretching.
- 7.4 Carefully slide the backup ring (71006998) over the stem into the O-ring groove. Reform the backup ring into the groove as needed.
- 7.5 Remove O-ring installation tool.
- 7.6 Apply O-ring lube to the 1.2mm O-ring (71006956).
- 7.7 Slide the 1.2mm O-ring over the stem into the O-ring groove.

8. Replacing the Piston Cup Seal

Figure 9 – Piston Assembly

- 8.1 Remove the spiral ring from the piston assembly *pick or small screwdriver*.
- 8.2 Remove the cup seal from the piston and discard.
- 8.3 Apply O-ring lube to the new piston cup seal (71006962)
- 8.4 Press the cup seal all the way on to the piston. Protect the tip of the pin from damage during cup seal installation by placing a rag between the pin and the bench. Note: the hat ring can be flipped over to aid installation. See Figure 10.

Figure 10 - Installing Piston Seal

- 8.5 Orient the hat ring over so the flat side faces the spiral ring. See Figure 9 for more details.
- 8.6 Install the spiral ring on the piston.

9. Replacing the Gate Pad and Gate Pad Assembly Seals

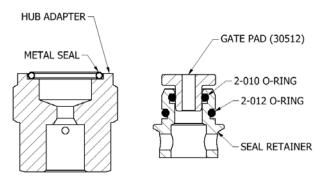


Figure 11 – Gate Pad Assembly Cross Section

- 9.1 Remove the two O-rings from the gate pad seal retainer and discard *pick with bent tip*.
- 9.2 Install 2-010 O-ring into gate pad seal retainer. This will be easier if you do not lubricate it first.

- 9.3 Apply O-ring lube to the new 2-012 O-ring and install on the gate pad seal retainer.
- 9.4 Apply O-ring lube to the gate pad shaft.
- 9.5 Insert the gate pad into the seal retainer.
- 9.6 Look inside seal retainer to verify O-ring was not cut.
- 9.7 Remove the metal seal from the gate pad plug and discard. Take care not to scratch the sealing surface *brass pick*.
- 9.8 Apply O-ring lube to the new metal seal and install in adapter hub.

10. Replacing Stem Seals

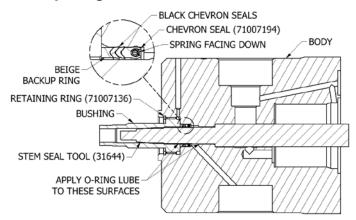


Figure 12 - Stem Seal Cross Section

- 10.1 Apply O-ring lube to stem seal tool. See Figure 12
- 10.2 Insert stem seal tool fully into body.
- 10.3 Apply O-ring lube to a new chevron seal.
- 10.4 While holding stem seal tool in place, install a new chevron seal (71007194) over the stem seal tool. See Figures 12 and 13 for orientation of the chevron seal.

Figure 13 – Stem Seals

Use the O-ring press tool to push seals fully into gland. Screw in hand tight. See Figure 14 - O-ring Press Tool (30643)

Figure 14 - O-ring Press Tool

- Remove the O-ring press tool and check that the chevron seal is correctly installed and not cut.
- 10.7 Apply a small amount of low strength Loctite to the external threads of the stem bushing.
- 10.8 Screw the stem bushing into the body. Tighten hand tight. Note: the body must be held in a horizontal position during this step to allow the stem seal tool to move out of the way as the bushing is screwed in.
- 10.9 Remove the stem seal tool.
- 10.10 Torque bushing to 40 ft.lbf [54 Nm] Torque wrench, 13mm socket.
- 10.11 Install the retaining ring (71007136) Circlip **Pliers**

WARNING

THE RETAINING RING MUST BE REINSTALLED TO PREVENT THE STEM BUSHING FROM BACKING OUT, WHICH COULD LEAD TO A HIGH-PRESSURE LEAK.

11. Valve Reassembly

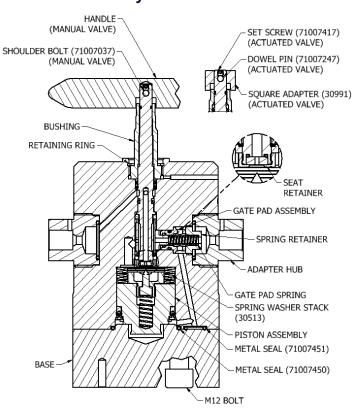


Figure 15 - SF10000HTVB Cross-Section

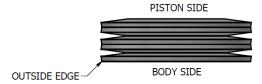

- Apply a generous coating of lithium grease to the stem threads.
- 11.2 Apply O-ring lube to stem sealing surface. See Figure 16.

Figure 16 – Stem Sealing Surface

- 11.3 Align gate profile with gate pad bore. Pushing on the seat retainer, insert stem fully into body.
- 11.4 Screw stem clockwise via seat retainer until you reach the top stop. Once the handle hole emerges from the bushing you can use a rod through the handle hole to finish screwing in the stem - 12mm socket, ø3.5mm rod.
- 11.5 As the gate becomes visible in the gate pad bore, align the gate profile with the gate pad bore; use your thumb to keep it aligned as you screw in the stem.

- 11.6 Verify that the gate profile is visible in the gate pad bore and the gate guide ring is not visible. Note: ceramic gate does not have a top guide ring.
- 11.7 Place the valve in a bench vise stem facing down.
- 11.8 Stack the spring washers, alternating dish up and dish down. See Figure 17.

Figure 17 – Spring Stack Arrangement

- 11.9 Insert this stack into the valve body. The outside edge must be facing down into the body. See Figure 13.
- 11.10 Apply O-ring lube to the piston cup seal.
- 11.11 Insert the piston subassembly into the body, pin side down. Press down on the piston with the heel of your hand until the piston contacts the springs.
- 11.12 Remove the metal seals from the bottom of body and discard. Take care not to scratch the sealing surface *brass pick*.
- 11.13 Apply O-ring lube to the new metal seals and install in the metal seal glands in the bottom of the body.
- 11.14 Place the base onto the valve.
- 11.15 Apply anti-seize to the 8X M12 socket head cap screws (SHCS) and install in the base.
- 11.16 Gradually torque the 8 fasteners in a star pattern (in opposite pairs). It may take a couple of passes to compress the metal seal spring. 10mm T handle hex key
- 11.17 Tighten SHCS in opposite pairs. Torque to 40 ft.lbf [54 Nm]. 10mm hex key, torque wrench
- 11.18 Double check all the fasteners are torqued correctly by working clockwise through all 8. 10mm hex key, torque wrench

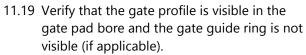


Figure 18 – Gate View Through
Gate Pad Hole

- 11.20 Secure the body in a bench vise with gate pad bore facing up.
- 11.21 Insert gate pad subassembly into gate pad bore, gate pad first.
- 11.22 Insert gate pad coil spring.
- 11.23 Screw in spring retainer 12mm socket.
- 11.24 Coat adapter hub threads with anti-seize.
- 11.25 Install adapter hub and torque to 180 ft.lbf [244 Nm]. 28mm hex, Torque Wrench

12. Handle Installation

- 12.1 Manual Valve
 - 12.1.1 Place handle on stem and align the holes.
 - 12.1.2 Insert shoulder bolt and tighten, be careful not to shear the hex *2mm hex key.*
- 12.2 Actuated Valve
 - 12.2.1 Place square drive adapter on stem, aligning holes.
 - 12.2.2 Insert dowel pin into hole– ø*3.5mm rod, hammer*.
 - 12.2.3 Center dowel pin in square drive ø3.5mm rod, hammer.
 - 12.2.4 Insert SHSS into end of stem and tighten 2mm hex key.

Surface CIMV, Low Flow, HTV

13. Disconnecting Valve From the SF3 Actuator

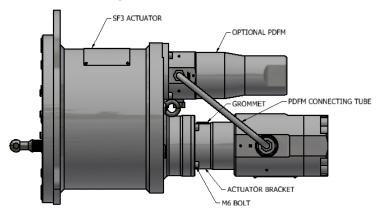


Figure 19 - SF10000HTVB with SF3 Actuator

13.1 If unit does not have a PDFM skip to step 13.5

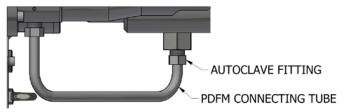


Figure 20 – PDFM Connecting Tube

- 13.2 Unscrew the nut from each fitting 5/8" wrench.
- 13.3 Pull the tube out straight out from the fittings.
- 13.4 Note the orientation of the actuator bracket grommet to the SF3 Actuator and valve for reference when reassembling.
- 13.5 Unscrew the 4X M6 bolts attaching the actuator bracket to the SF3 Actuator.
- 13.6 Pull Disconnect the valve from the actuator.
- 13.7 Unscrew the 4X M6 bolts attaching the actuator bracket to the SF10000HTVB.
- 13.8 Remove the bracket from the valve.

14. Reconnecting the SF10000HTVB to the SF3 Actuator

- 14.1 Apply a thin layer of anti-seize to the valve square.
- 14.2 Remove the grommet from the actuator bracket.
- 14.3 Apply anti-seize to 8X M6 bolts.
- 14.4 Orient the valve and actuator bracket as they were prior to disassembly.

SF10000HTVB

- 14.5 Insert 4X M6 SHCS in the bracket holes.
- 14.6 Tighten fasteners in opposite pairs *5mm hex key.*
- 14.7 With the SF10000HTVB and actuator bracket oriented as they were prior to disassembly, align the square drive with the actuator drive shaft. Rotate valve as necessary. Note: the square drive can be viewed through the grommet hole.
- 14.8 Slide the square drive into the drive shaft.
- 14.9 Realign the fastener holes.
- 14.10 Insert 4X M6 SHCS into the bracket.
- 14.11 Tighten fasteners in opposite pairs *5mm hex key.*
- 14.12 Install the grommet in actuator bracket.
- 14.13 Reinsert the PDFM connecting tube to the fittings in the valve and PDFM. Note: the shorter end of the tube goes to the valve.
- 14.14 Tighten the autoclave nuts 5/8" wrench.
- 14.15 After reconnecting the valve to the SF3 actuator, the actuator must be recalibrated. See the appropriate SF3 Actuator and PDFM user guide for more details.

FREQUENTLY ASKED QUESTIONS

Table 7 – Frequently Asked Questions

ALL CIMVs				
Question	Answer			
CIMV Shutoff Ability	SkoFlo CIMVs are not shut off devices. Separate isolation valves should be used for shutting off the flow.			
Protection Against Reverse Flow	A check valve shall be installed immediately downstream of the valve (within 6 inches) to prevent seal damage.			
Minimum Differential Pressure to Operate	See CIMV specification sheet that was supplied with the CIMV to determine minimum required pressure drop.			
Excessive Pressure Drop	For flows above 100 US gallons per day (15.8 LPH), pressure drops across the CIMV should not exceed 3,000 psi (207bar) for extended periods to avoid cavitation, which could lead to erosion of the throttling components. As a general rule, the outlet pressure must be greater than or equal to the pressure drop to avoid cavitation.			
Fluid Cavitation	Fluid cavitation occurs primarily when CIMV pressures (and secondarily fluid viscosity and velocity) cause a drop below the fluid vapor pressure. When the SkoFlo CIMV enters its cavitation region, energy release from vapor compression at the pin/seat interface may cause premature wear.			
Chemical Filming	Historically, chemical filming has not been experienced in SkoFlo HTD/HTV models. Chemical filming is dependent on chemical composition selection by the user. Injected chemicals would need to have an affinity to ceramic to film. Currently, there are no known chemicals that have this affinity.			
Blowout Proof Stem	The stem design is blowout proof.			

TROUBLESHOOTING

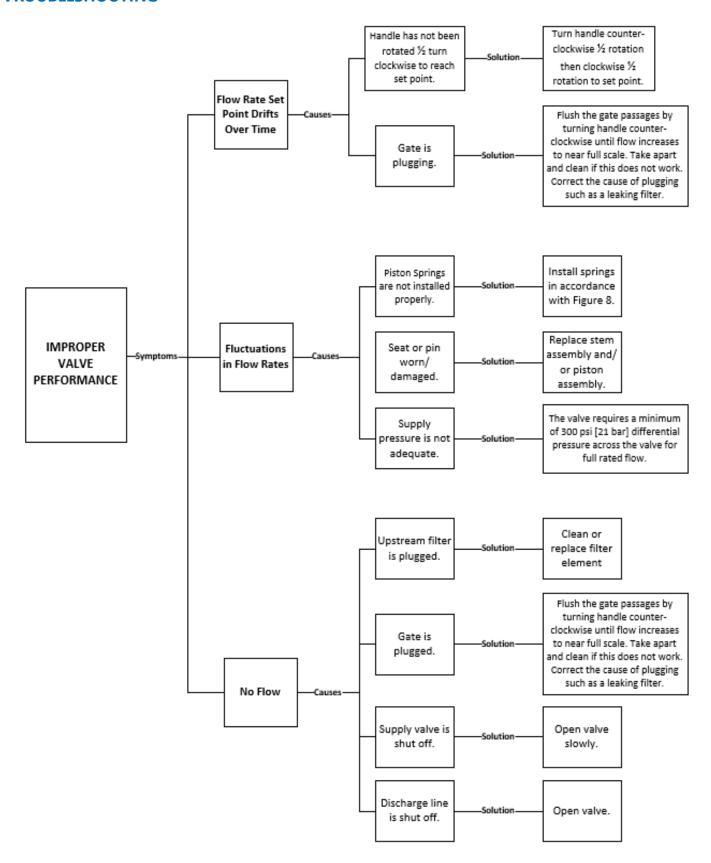
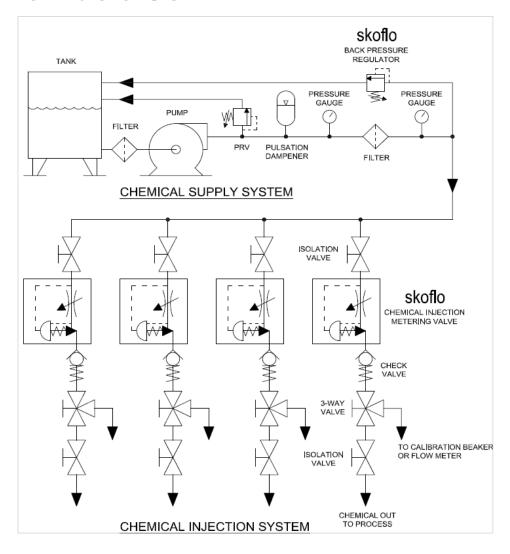
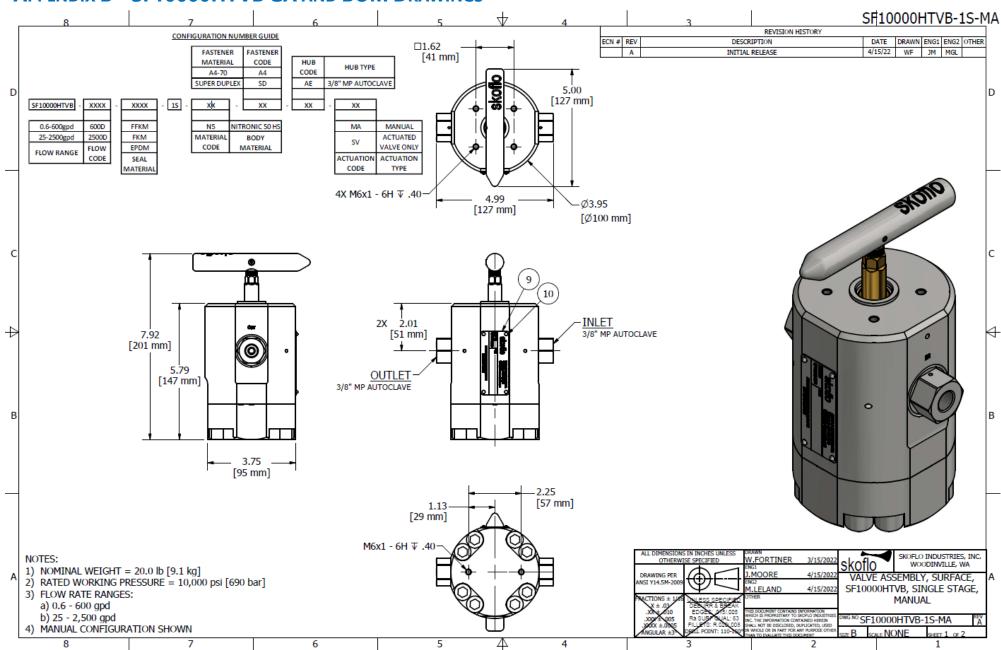



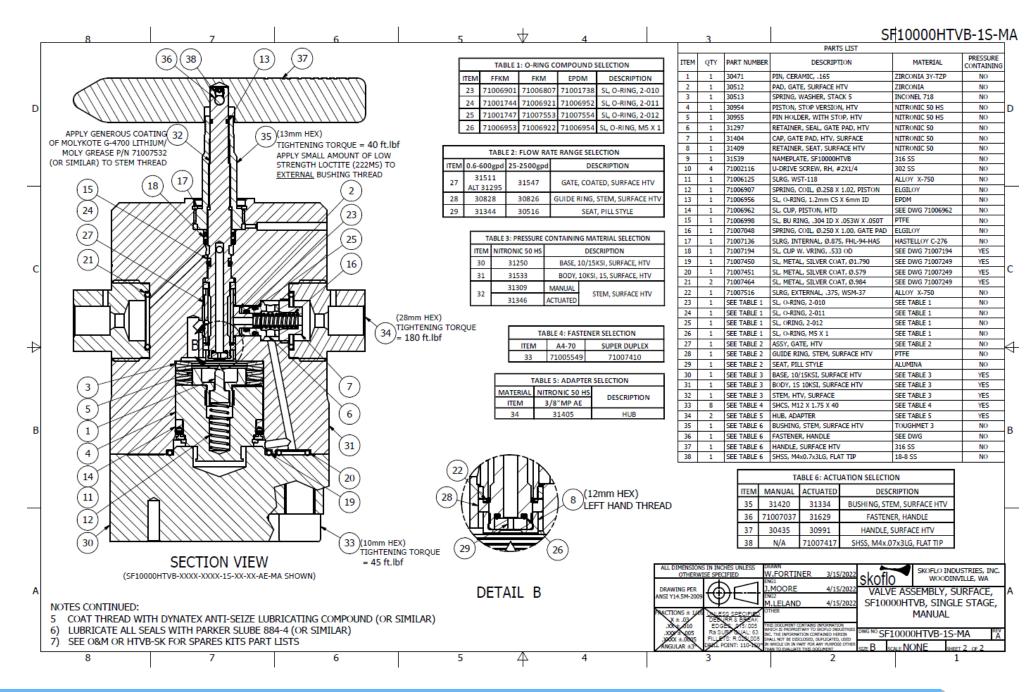
Figure 21 – Troubleshooting

APPENDIX A - A TYPICAL CHEMICAL INJECTION SYSTEM

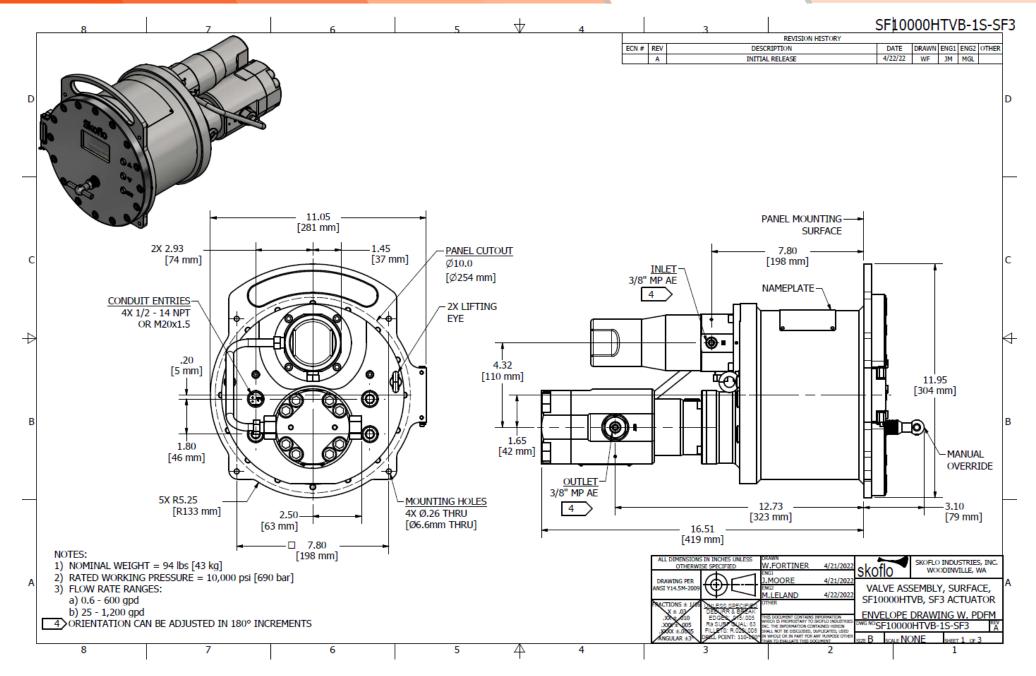

NOTES

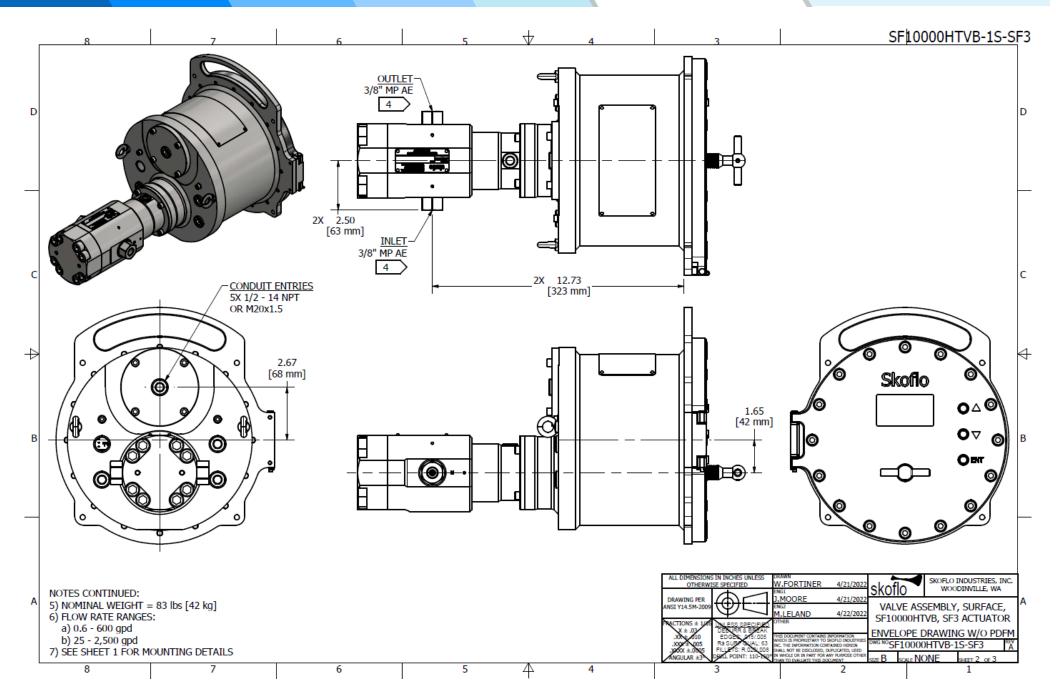
Any number of injection points can be served by a single pump and header system. The only limitation is the flow capability of the pump.

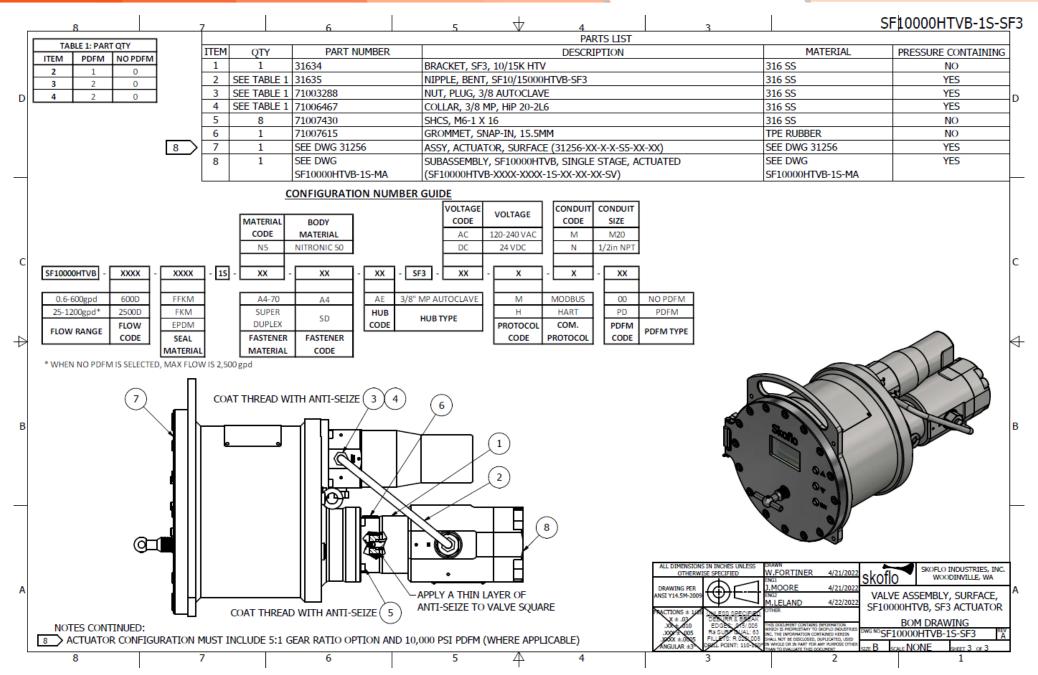
Check valve shall be installed within 6 inches of the SkoFlo CIMV.



APPENDIX B – SF10000HTVB GA AND BOM DRAWINGS







SF10000HTVB

SkoFlo Industries 14241 NE 200th Street Woodinville, WA 98072 USA Tel 1-425-485-7816 Fax 1-425-368-1696

www.SkoFlo.com

